Inteligencia artificial en la detección de pólipos colónicos: qué dicen los estudios

  • Ricardo Aníbal Cepeda Vásquez Clínica del Country
Palabras clave: POLIPOS, inteligencia, inteligencia artificial

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ricardo Aníbal Cepeda Vásquez, Clínica del Country

Médico Cirujano, Especialista en Medicina Interna de la Universidad Javeriana y Especialista en Gastroenterología de la Universidad Militar. Gastroenterólogo, Clínica del Country. Bogotá, Colombia

Referencias bibliográficas

Patel SG, Ahnen DJ. Prevention of interval colorectal cancers: What every clinician needs to know. Clin. Gastroenterol. Hepatol. 2014; 12: p. 7-15. https://doi.org/10.1016/j.cgh.2013.04.027

Murthy S, Benchimol E, Tinmouth J. Temporal trends in postcolonoscopy colorectal cancer ratesein 50 to 74 year old persons: a populatión bases study. Gastrointest Endosc. 2018; 87: p. 1324-34. https://doi.org/10.1016/j.gie.2017.12.027

Kaminski M, Thomas-Gibson S, Bugajski M, Bretthauer M, Rees C, Dekker E. Performance measures for lower gastro-intestinal endoscopy: A European Society of GastrointestinalEndoscopy (ESGE) Quality Improvement Initiative. Endoscopy. 2017; 49: p. 378-97. https://doi.org/10.1055/s-0043-103411

Corley D, Jensen C, Marks A, at el. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;(370): p. 1298-1306. https://doi.org/10.1056/NEJMoa1309086

Ahn SB, Han DS, Bae J, Byun T, Kim J, Eun C. The Miss Rate for Colorectal Adenoma Determined by Quality-Adjusted, Back-to-Back Colonoscopies. Gut Liver. 2012; 6: p. 64-70. https://doi.org/10.5009/gnl.2012.6.1.64

Sanduleanu S, Masclee A, Meijer G. Interval cancers after colonoscopy-insights and recommendations. Nat Rev Gastroenterol Hepatol. 2012; 9: p. 550-554. https://doi.org/10.1038/nrgastro.2012.136

Zhao S, Wang S, Pan P, Xia T, Chang X, Yang X, et al. Magnitud, factores de riesgo y factores asociados con la tasa de pérdida de adenoma de la colonoscopia en tándem: una revisión sistemática y un metanálisis. Gastroenterology. 2019; 156: p. 1661-74.

Kudo T, Saito Y, Ikematsu H, Hotta K, Takeuchi Y, Shimatani M, et al. New-generation full-spectrum endoscopy versus standardforward-viewing colonoscopy: a multicenter, randomized, tandem colonoscopy trial (J-FUSE Study). Gastrointest Endosc. 2018; 88: p. 854-864. https://doi.org/10.1016/j.gie.2018.06.011

Atkinson N, Ket S, Bassett P, Aponte D, De Aguiar S, Gupta N, et al. Narrow-Band Imaging for Detection of Neoplasia at Colonoscopy: A Meta-analysis of Data FromIndividual Patients in Randomized Controlled Trials. Gastroenterology. 2019; 157: p. 462-471. https://doi.org/10.1053/j.gastro.2019.04.014

Leung W, Lo O, Liu K, Tong T, But D, Lam F, et al. Detection of colorectal adenoma by narrow band imaging (HQ190) vs. high-definition white lightcolonoscopy: a randomized controlled trial. Am J Gastroenterol. 2014; 109(855-863). https://doi.org/10.1038/ajg.2014.83

Leung W, Guo C, Ko M, To E, Mak L, Tong T, et al. Linked color imaging versusnarrow-band imaging for colorectal polyp detection: a prospective randomized tandem colonoscopy study. 2020; 91: p. 104-112. https://doi.org/10.1016/j.gie.2019.06.031

Yoshida N, Hisabe T, Ikematsu H, Ishihara H, Terasawa M, A I, et al. Comparison Between Linked Color Imaging and Blue Laser Imaging for Improving the Visibility of Flat Colorectal Polyps: A Multicenter Pilot Study. Digestive Diseases and Sciences. 2020; 65(2054-2062). https://doi.org/10.1007/s10620-019-05930-x

Vinsard DM, Misawa M, Kudo S, Rastogi A, Bagci UW. Quality assurance of computer-aided detection and diagnosis. Gastrointest Endoscopy. 2019; 90(1): p. 55-63. https://doi.org/10.1016/j.gie.2019.03.019

Lui, TK, Leung WK. Is artificial intelligence the final answer to missed polyps in colonoscopy? World J Gastroenterol. 2020 Sep; 26(35): p. 5248-5255. https://doi.org/10.3748/wjg.v26.i35.5248

Takiyama H, Ozawa T, Ishihara S, Fujishiro M, Shichijo S, Nomura S, et al. Automaticanatomical classification of esophagogastroduodenoscopy images using deep convolutional neuralnetworks. Sci Rep. 2018; 8(1): p. 7497. https://doi.org/10.1038/s41598-018-25842-6

Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, et al. Deep Learning Localizesand Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology. 2018; 155: p. 1069-1078. https://doi.org/10.1053/j.gastro.2018.06.037

Wang P, Berzin T, Glissen B, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019 Oct; 1813-1819(4): p. 1252-1261. https://doi.org/10.1136/gutjnl-2018-317500

Byrne M, Chapados N, Soudan F, Oertel C, Linares M, Kelly R, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps duringanalysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019; 68: p. 94-100. https://doi.org/10.1136/gutjnl-2017-314547

Chen P, Lin M, Lai M, Lin J, Lu H, Tseng V. Accurate Classification of DiminutiveColorectal Polyps Using Computer-Aided Analysis. Gastroenterology. 2018; 154: p. 568-575. https://doi.org/10.1053/j.gastro.2017.10.010

Wang P, Liu P, Glissen Brown JR, Berzin TM, Zhou G, Lei SXX. Lower Adenoma Miss Rate of Computer-aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study. Gastroenterology. 2020 ; 159(4): p. 1252-1261. https://doi.org/10.1053/j.gastro.2020.06.023

Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, Rondonotti E, et al. Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology. 2020; 159(2): p. 512-520. https://doi.org/10.1053/j.gastro.2020.04.062

Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. l. 2020;5:352-361. Lancet Gastroenterol Hepato. 2020; 5: p. 352-361. https://doi.org/10.1016/S2468-1253(19)30413-3

Hassan M, Spadaccini A, Iannone R, Masell M, et a. Performance of artificial intelligence for colonoscopy regarding adenoma and polyp detection. Gastrointestinall Endoscopy. 2021; 93(1): p. 77-85. https://doi.org/10.1016/j.gie.2020.06.059

Aziz M, Fatima R, Dong C, Lee-Smith W, Nawras A. The impact of deep convolutional neural network-based artificial intelligence on colonoscopy outcomes: A systematic review with meta-analysis. J Gastroenterol Hepatol. 2020 Oct; 35(10): p. 1676-83. https://doi.org/10.1111/jgh.15070

Lui T, Guo C, LW. Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: a systematic review and meta-analysis. Gastrointest Endosc. 2020; 92(1): p. 11-22. https://doi.org/10.1016/j.gie.2020.02.033

Publicado
2021-03-08
Cómo citar
Cepeda Vásquez, R. A. (2021). Inteligencia artificial en la detección de pólipos colónicos: qué dicen los estudios. Revista Colombiana De Gastroenterología, 36(1), 2-6. https://doi.org/10.22516/25007440.726
Sección
Editorial
Crossref Cited-by logo

Más sobre este tema